cooled, treated with EtOAc (10 ml), and refluxed for 30 min . After addn of $\mathrm{H}_{2} \mathrm{O}$ and 1 N NaOH alternately, the mixt was filtered and concd in vacuo to remove THF. The residue was acidified with 6 N HCl and extd with $\mathrm{Et}_{2} \mathrm{O}$. The aq acid soln was basified and extd with $\mathrm{Et}_{2} \mathrm{O}$, and the dried $\mathrm{Et}_{2} \mathrm{O}$ ext was treated with ethanolic HCl to af ford 0.51 g (yield, 78%) of $8 \cdot \mathrm{HCl}$.
(+)-3-Hydroxymorphinan (12). A CHCl_{3} soln (25 ml) contg $4.0 \mathrm{~g}(0.0015 \mathrm{~mole})$ of 7 was treated with ethyl chloroformate (20 ml) and anhyd $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 g). The reaction mixt was stirred for 24 hr and the CHCl_{3} then removed in vacuo. The residue was suspended in $1 N \mathrm{HCl}(50 \mathrm{ml})$ and extd with $\mathrm{Et}_{2} \mathrm{O}$. Removal of $\mathrm{Et}_{2} \mathrm{O}$ afforded an oil (2.5 g) which was dissolved in a mixt of glacial $\mathrm{AcOH}(10 \mathrm{ml})$ and $48 \% \mathrm{HBr}(10 \mathrm{ml})$. After refluxing under N_{2} for 6 hr , the reaction mixt was poured in ice water (300 ml), extd with $\mathrm{Et}_{2} \mathrm{O}$, and basified to afford $1.1 \mathrm{~g}(31 \%)$ of $12, \mathrm{mp} 260-263^{\circ}$ [reported for (-)-3-hydroxy morphinan, mp $260-262^{\circ} \mathrm{J}^{.18}$

Norcodeine (7). A soln of 3.8 g (0.012 mole) of codeine (4) in $\mathrm{CHCl}_{3}(50 \mathrm{ml})$ was treated with ethyl chloroformate (5 ml) and 15% aq KOH (50 ml). The 2 -phase reaction mixt was shaken for 24 hr . Five successive $1-\mathrm{ml}$ portions of ethyl chloroformate were added to the reaction mixt at $1-\mathrm{hr}$ intervals, and KOH soln was added when necessary to maintain a $\mathrm{pH}>10$. At the end of 24 hr , the CHCl_{3} layer was sepd and extd with 1 NHCl . The CHCl_{3} was removed in vacuo to afford an oil (3.2 g) whose ir spectrum included characteristic absorptions at $1690 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ of $\left.\mathrm{N}-\mathrm{CO}_{2} \mathrm{Et}\right)$ and 1740 $\mathrm{cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ of $\left.\mathrm{O}^{6}-\mathrm{CO}_{2} \mathrm{Et}\right)$. This was treated with a mixt of MeOH (90 ml) and 10% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$ for 2 hr , concd in vacuo to remove MeOH , extd with $\mathrm{Et}_{2} \mathrm{O}$, and the $\mathrm{Et}_{2} \mathrm{O}$ was extd with $1 N \mathrm{HCl}$. Removal of $\mathrm{Et}_{2} \mathrm{O}$ afforded 2.5 g of an oily uncrystallizable material. A soln of 2.0 g of the oil in $95 \% \mathrm{EtOH}(80 \mathrm{ml})$ was treated with 50% aq KOH (20 ml) and refluxed under N_{2} for 24 hr . The soln was dild with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and the EtOH was removed under reduced pressure. The aq acid soln was basified and extd with $\mathrm{Et}_{2} \mathrm{O}$. The $\mathrm{Et}_{2} \mathrm{O}$ was removed under reduced pressure to give 0.7 g (yield, 43%) of $7: \mathrm{mp} 183-185^{\circ}$ (reported $\mathrm{mp} 185^{\circ}$); ${ }^{19} 7 \cdot \mathrm{HCl}, \mathrm{mp} 309-$ $311^{\circ} \mathrm{dec}$ (reported $\mathrm{mp} 309^{\circ} \mathrm{dec}$). ${ }^{19}$

References

(1) P. S. Portoghese, J. Pharm. Sci., 55, 865 (1966).
(2) "Analgetics," G. deStevens, Ed., Academic Press, New York, N. Y., 1965.
(3) H. A. Hageman, Org. React., 7, Chapter 4 (1953).
(4) O. Diels and E. Fischer, Ber., 47, 2043 (1914).
(5) A. Pohland and H. R. Sullivan, Jr., U. S. Patent 3,342,824 (1967).
(6) E. Speyer and L. Walther, Ber., 69B, 852 (1930).
(7) E. Späth, L. Marion, and E. Zajic, ibid., 69B, 251 (1936).
(8) F. Bayer and Co., German Patent 255,942 (1911).
(9) J. Gadamer and F. Knoch, Arch. Pharm. (Weinheim), 259, 135 (1921).
(10) E. H. Flynn, H. W. Murphy, and R. D. McMahon, J. Amer. Chem. Soc., 77, 3104 (1955).
(11) J. A. Campbell, J. Org. Chem., 22, 1259 (1957).
(12) M. M. Abdel-Monem and T. O. Soine, J. Pharm. Sci., 56, 976 (1967).
(13) G. Kraiso and L. Nador, Tetrahedron Lett., 57 (1971).
(14) J. D. Hobson and J. B. McCluskey, J. Chem. Soc., 15 (1967).
(15) R. E. McMahon in "Advances in Tracer Methodology," Vol. 4, S. Rothchild, Ed., Plenum Press, New York, N. Y., 1968, p 29.
(16) Merck Index, 8 th Ed., D. G. Stecher, Ed., Merck and Co., Inc., Rahway, N. J., 1968, p 702.
(17) Reference $16, \mathrm{p} 749$.
(18) O. Schnider and A. Grussner, Helv. Chim. Acta, 34, 2211 (1951).
(19) Reference $16, \mathrm{p} 747$.

Synthesis of 4(3H)-Pteridinones

Ernst Felder,* Davide Pitrè, and Sergio Boveri
Research Laboratories, Bracco Industria Chimica, Milan, Italy, Received May 24, 1971

The sedative-hypnotic activity of some $4(3 \mathrm{H})$-quinazolones ${ }^{1}$ prompted us to synthesize a number of the isosteric $4(3 \mathrm{H})$-pteridinones and to investigate their hypnotic and
sedative activities. The existing literature gives only a few examples of preparation of 3-alkyl or 3-aryl substituted $4(3 H)$-pteridinones ${ }^{2-4}$ and no data at all on their pharmacology. The synthesis of the title compounds involved the intermediate 3-aminopyrazinecarboxamides, described in Table I, which were obtained, in good yield, from 3-aminopyrazinoic acid (I), ${ }^{5}$ via the mixed anhydride (II) ${ }^{6}$ and reaction of the latter with appropriate amines $\left(\mathrm{R}_{2} \mathrm{NH}_{2}\right)$.

The 3-aminopyrazinecarboxamides (III) could be cyclized to the desired $4(3 H)$-pteridinones (IV) by condensation with an ortho ester $\mathrm{R}_{3} \mathrm{C}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ in $\mathrm{Ac}_{2} \mathrm{O}$ solution. The amides (III), in contrast to the $4(3 H)$-pteridinones (IV), reveal a characteristic fluorescence under uv light, which is helpful for their identification by chromatography.

In preliminary CNS screening the majority of the compounds were found to be without hypnotic or sedative activity. Compds 23,30 , and 31 showed a slight sedative activity at $300 \mathrm{mg} / \mathrm{kg}$ (mouse) and with 30,31 , and 38 some analgetic activity was observed at $150-250 \mathrm{mg} / \mathrm{kg}$ (mouse; phenylbenzoquinone test) and $150-500 \mathrm{mg} / \mathrm{kg}$ (mouse; hotplate test), but all the compounds showed too low a therapeutic index, the LD_{50} ($\mathrm{mg} / \mathrm{kg}$; mouse; Litchfield and Wilcoxon) being 1250 (1042-1500), 575 (483-684), 1220 (1070-1391), and 1750 (1400-2187) for 23, 30, 31, and 38 , respectively.

Experimental Section

The melting points of all but four compds 21-47 were taken with a Mettler FP-1 apparatus, all the others with a Büchi apparatus, and are uncorrected. Uv and ir spectra were measured for some typical compds and were as expected. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical value.

3-Aminopyrazinecarboxamides (1-20). A mixt of $5.56 \mathrm{~g}(0.04$ mole) of 3 -aminopyrazinoic acid, 7.4 g (0.04 mole) of $\mathrm{Bu}_{3} \mathrm{~N}$, and 50 ml of dioxane was stirred at room temp until a clear soln resulted. This soln was cooled to $7-8^{\circ}$ and $4 \mathrm{ml}(0.04 \mathrm{~mole})$ of EtOCOCl was added dropwise, keeping the temp at $11-12^{\circ}$. After cooling again to $7-8^{\circ}, 0.04$ mole of the appropriate amine hydrochloride was added, and the reaction was allowed to proceed at room temp for 3 hr . The solvent was removed on a rotatory evaporator under reduced pressure and the residue was triturated for 30 min with 50 ml of $\mathrm{H}_{2} \mathrm{O}$, filtered, dried, and recrystd. Recrystn solvents and physical data are given in Table I.

4(3H)-Pteridinones (21-47). A mixt of 0.01 mole of III, 25 ml of ortho ester, and $20-30 \mathrm{ml}$ of $\mathrm{Ac}_{2} \mathrm{O}$ was refluxed for 5 hr and then concd on a rotatory evaporator at room temp in vacuo. The residue was triturated with 20 ml of EtOH , and, after evapn of the solvent, washed with $\mathrm{Et}_{2} \mathrm{O}$, filtered, dried, and recrystd. Recrystn solvents and physical data are given in Table II. For 23 the reaction was carried out in anhyd $\mathrm{HCO}_{2} \mathrm{H}$, and for 24 in 1:1 anhyd $\mathrm{HCO}_{2} \mathrm{H}-\mathrm{Ac}_{2} \mathrm{O}$

Table I. 3-Aminopyrazinecarboxamides (III)

No.	R_{2}	R_{1}	Formula	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Crystn solvent	Anal.
1	CH_{3}	H	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$	134	33\% EtOH	C, H, N
2	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	134	EtOH	C, $\mathrm{H}, \mathrm{Cl}, \mathrm{N}, \mathrm{H}_{2} \mathrm{O}$
3	Cyclo-C55 ${ }_{5}$	H	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	73	$\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}, \mathrm{H}, \mathrm{N}$
4	Cyclo-C6 H_{11}	H	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	107-108	$33 \% \mathrm{EtOH}$	C, H, N
5	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	105	$50 \% \mathrm{EtOH}$	C, H, N
6	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	136	50\% EtOH	C, H, N
7	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	112	50\% EtOH	C, H, N
8	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	158	EtOH	C, H, N
9	$o-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	154	95\% EtOH	C, H, N
10	$p-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	125	95\% EtOH	C, H, N
11	$o-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	134-135	65\% EtOH	C, H, N
12	$m-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	104-105	65\% EtOH	C, H, N
13	p - $\mathrm{EtOC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	139-140	65\% EtOH	C, H, N
14	$p-\mathrm{BuOC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	134	EtOH	C, H, N
15	$p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	180	n-BuOH	C, H, N
16	$\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{CH}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$	H	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	136	95\% EtOH	$\mathrm{C}, \mathrm{H}, \mathrm{N}$
17	p- $\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{ClN}_{4} \mathrm{O}$	190-191	Dioxane- $\mathrm{H}_{2} \mathrm{O}$	C, H, Cl, N
18	3-Pyridyl	H	$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$	155-156	EtOH	C, H, N
19 20	$\mathrm{C}_{6} \mathrm{H}_{5}$	Br Br	$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{BrNa}_{4} \mathrm{O}$	157	95\% EtOH	$\mathrm{C}, \mathrm{H}, \mathrm{Br}, \mathrm{N}$
20	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	Br	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BrN}_{4} \mathrm{O}$	176	95\% EtOH	C, H, Br, N

Table II. 4(3H)-Pteridinones (IV)

No.	R_{2}	R_{3}	R_{1}	Formula	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Crystn solvent ${ }^{\text {a }}$	Anal.
21	CH_{3}	H	H	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$	294.5-296.5	MeCN	C, H, N
22	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	204.5-207	EtOH	C, H, N
23	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	166.5-172.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{P}$	C, H, N
24	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	H	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}$	235-236.5	$\mathrm{CHCl}_{3}-\mathrm{Et}_{2} \mathrm{O}$	C, H, N
25	$p-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{6} \mathrm{H}_{4}$	H	H	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$	239-241.5	MeCN	$\mathrm{H}, \mathrm{N}, \mathrm{C}^{\text {b }}$
26	o- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	H	${ }^{\mathrm{Br}}$	$\mathrm{C}_{13} \mathrm{H}_{2} \mathrm{Br} \mathrm{N}_{4} \mathrm{O}$	$\sim 147^{\text {d }}$	EtOH	C, $\mathrm{H}, \mathrm{Br}, \mathrm{N}$
27	H	CH_{3}	H	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}$	>299	MeCN	$\mathrm{C}, \mathrm{H}, \mathrm{N}$
28	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	H	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	202-205.5	THF	C, H, N
29	Cyclo-C55	CH_{3}	H	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	164.5-167	$n-\mathrm{Bu}_{2} \mathrm{O}$	C, H, N
30	Cyclo-C6 ${ }^{\text {H }}$	CH_{3}	H	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	203-204.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{P}$	C, H, N
31	$o-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	188.5-190.5	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{P}$	C, H, N
32	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	201-204.5	EtOH	C, H, N
33	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	226-227.5	EtOH	C, H, N
34	$o-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	179.5-182.5	EtOH	C, H, N
35	$p-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}$	177.5-180.5	EtOH- $i-\mathrm{Pr}_{2} \mathrm{O}$	C, H, N
36	$\bigcirc-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	240.5-243.5	MeOEtOH	C, H, N
37	m - $\mathrm{EtOC}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	$148{ }^{\text {d }}$	EtOH	C, H, N
38	p - $\mathrm{EtOC}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	196-198.5	EtOH	$\mathrm{H}, \mathrm{N}, \mathrm{C}^{\text {c }}$
39	$p-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{6} \mathrm{H}_{4}$	CH_{3}	H	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}$	$\sim 144^{\text {d }}$	EtOH	C, H, N
40	$\underset{\substack{\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OC}_{6} \mathrm{H}_{4} \\ \mathrm{C}_{6} \mathrm{H}_{5} \\ \mathrm{C}_{6} \mathrm{H}_{5}}}{\text { and }}$	CH_{3}	H	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	155-159.5	EtOH	C, H, N
41	$-\mathrm{CH}-\mathrm{CH}_{2}$	CH_{3}	H	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	198.5-204	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{P}$	C, H, N
42	$3-\mathrm{Py}$	CH_{3}	H	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}$	200.5 dec	EtOH	C, H, N
43	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	Br	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{4} \mathrm{O}$	$\sim 195^{\text {a }}$	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{P}$	C, H, Br, N
44	Cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	147.5-150.5	EtOH	$\mathrm{C}, \mathrm{H}, \mathrm{N}$
45	$p-(i-\mathrm{Pr}) \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	160-163	EtOH	C, H, N
46	p - $\mathrm{EtOC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$	165.5-167.5	EtOH	C, H, N
47	$p-\mathrm{EtOC}_{6} \mathrm{H}_{4}$	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	H	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	117-121.5	$\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$	C, H, N

$a_{\mathrm{P}}=$ petr ether. ${ }^{b}$ Calcd, 62.67; found, 62.15. ${ }^{c}$ Calcd, 63.82; found, 64.35. ${ }^{d}$ Büchi apparatus.

Acknowledgment. We thank Dr. G. Rosati, of these Research Laboratories, for the pharmacological screening.

References

(1) M. L. Gujral, P. N. Saxena, and R. S. Tiwari, Indian Med. Res.,

43, 637,(1955).
(2) E. C. Taylor, Jr., J. Amer. Chem. Soc., 74, 1651 (1952).
(3) J. H. Jones, J. B. Bicking, and E. J. Cragoe, Jr., J. Med. Chem., 10, 899 (1967).
(4) A. Albert and D. J. Brown, J. Chem. Soc., 74 (1953).
(5) S. Gabriel and A. Sonn, Chem. Ber., 40, 4850 (1907).
(6) D. Pitrè, S. Boveri, and E. Grabitz, ibid., 99, 364 (1966).

